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SUMMARY

The digital versions of optimal-linear-regulator theory and eigenvalue
placement theory are applied to the Mach number control loop of the National
Transonic Facility cryogenic wind tunnel. The control laws developed are eval-
uated on a nonlinear simulation of the tunnel process for a typical test
condition and are found to significantly reduce the open-loop time required to
achieve a Mach number set point.

INTRODUCTION

The National Transonic Facility (NTF), figure 1, will be a continuous-flow
cryogenic wind tunnel designed to satisfy the basic airfoil research and develop-
ment needs of the federal government and industry. The tunnel (refs. 1 and 2)
will operate on the basic principle that Reynolds number is inversely propor-
tional to temperature. It is expected to achieve an order of magnitude increase
in Reynolds number over existing tunnels at reasonable values of dynamic pres-
sure by injecting liquid nitrogen as a coolant to maintain the test gas at cryo-
genic temperatures. The NTF will be controlled by a digital computer in order
to achieve high productivity and to implement control of dynamic pressure, Mach
number, and Reynolds number, or other equivalent sets of process variables.

A plan view of the tunnel control circuit is shown in figure 2. The NTF will
be a closed-circuit fan-driven pressure tunnel capable of total pressures up
to 896 318 Pa (130 psi). It will have a 6.25-m2 (67.24-ft2) slotted test section
which will be 61 m (200 f£t) long and 14.6 m (48 ft) wide. It will operate from
room temperature to 88.70 K (-300°F). Liquid nitrogen (IN,) will be sprayed into
the circuit upstream of the fan (a) for the initial cooldown phase, (b) to
balance the heat rise associated with the gas compression by the fan, (c) during
steady-state temperature regulation, and (d) to act as the primary mode of tem-
perature control in the test section. During the ambient temperature operation
(air mode) of the NTF cooling functions, (b), (c), and (d) are taken over by a
heat exchanger, located in the stagnation section, and an external cooling tower.
No IN, is consumed in the air mode. Pressure control is provided by venting gas-
eous nitrogen (GNjy) from the tunnel to the outdoors. Coarse Mach number control
will be provided by fan motor speed regulation, and fine vernier Mach number
variations will be controlled with small changes about a constant reference guide
vane angle.

Digital computers and microprocessors will be employed for automation and
process control of the NTF. Among the functions planned for computer operation
are supervisory set—point programming, monitoring process limits, sequencing and
timing, and autcomation of the start-up and shutdown operational sequence. Addi-~
tionally, the digital capability will offer the opportunity to apply multivari-
able control techniques to the wind-tunnel process. The purpose of this report
is to demonstrate the use of two multivariable methods to design control laws for
a particular NTF operating condition.



Analytical studies of the NTF process have produced a transfer function
describing, in the s-domain, the dominant interaction of the test-section Mach
number and fan guide vane angle when the process is perturbed from a steady-
state operating condition. This transfer function is employed herein to
demonstrate the application of multivariable design methods to the Mach number
control loop of the NTF. Initially, in order to overcome a design difficulty
presented by a transport lag appearing in the transfer function and to gen-
erate time-domain equations needed for multivariable design, finite-difference
equations are derived which approximate the Mach number to guide vane angle
characteristics for zero-order hold guide vane actuator and actuator rate
inputs. Optimal linear regulator and eigenvalue placement techniques (refs. 3
and 4) are next applied to derive multivariable feedback control laws for Mach
number regulation about a typical steady-state operating condition. System
responses are calculated from the linear finite-difference design equations and
a nonlinear simulation, which solves the Navier-Stokes partial differential
equations for unsteady flow to represent the fluid flow dynamics.

SYMBOLS and ABBREVIATIONS

A response matrix for state equation in variable x (see egs. (A4),
(31), and (34))

Ag Ay defined by equations (15) and (16)

Ag,Aq,A defined by equations (20), (21), and (22)

B control effectiveness matrix for state equation in variable x (see
egs. (A4), (32), and (35))

Bg defined by equation (17)

B, defined by equation (A1)

go defined by equation (23)

g] defined by equation (A13)
col column matrix

diag diagonal matrix

f feedback gain

GN, gaseous nitrogen

h time delay, sec

i nonnegative integer

. =\ -1



k gain in transfer function defined by equation (1), deg~l

LNy liquid nitrogen

M Mach number

Mg set-point Mach number

m natural number defined by equation (18)
N positive integer, such that NA =T

P defined by equation (45)

Pt,f set-point total pressure, Pa

Q weighting matrix in equation (45)

rpm revolutions per minute

s Laplace transform parameter

T final time for matrix equation (A1), sec
Tt,f set-point total temperature, K

t time, sec

tg settling time, sec

u control variable

X state vector defined by equations (33) and (36)
% state vector defined by equation (14)

z defined by equation (24)

A sampling period, sec

M Mach number perturbation

60 guide vane angle perturbation

GGA guide vane angle actuator-input perturbation
T damping ratio

0 guide vane angle, deg

Oa guide vane angle actuator input



ef set—-point guide vane angle, deg

T time constant, sec

0] matrix defined by equation (46)
w frequency, rad/sec

t € [a,b) ast<b

~ approximately equal
A dot over a symbol denotes differentiation with respect to time.

A prime after a symbol denotes a matrix transpose.

MACH NUMBER TRANSFER FUNCTION CHARACTERISTICS

This section describes some basic characteristics of the NTF Mach number
control loop. The information to be presented was obtained by means of private
communication from George Gumas, Pennsylvania State University, Middletown,
Pennsylvania.

Consider the NTF process to be operating in a steady-state condition such
that, for some fixed fan speed, constant values of guide vane angle, liquid-
nitrogen injection rate, and gaseous-nitrogen vent rate are chosen to maintain
all tunnel states at zero time rate of change. When the guide vane angle is
perturbed from its steady-state value, while maintaining the liquid-nitrogen
injection and gaseous-nitrogen vent rates, the transfer function between test-
section Mach number and fan guide vane angle closely approximates the following
equation if no acoustic modes are excited and perturbations remain small:

SM(s) ke~hs
= (1)
86 (s) (ts + 1)

The symbols O6M(s) and d&6(s) represent, in the s-domain, the perturbations
away from steady-state Mach number Mg and guide vane angle Of¢ and are given
as

SM(s) M(s) - Mg/s (2)

and

86 (s) = 6(s) - O¢/s (3)



The constants k and T 1in equation (1) depend parametrically on the operating
condition. Tables I to III (provided by George Gumas) show k and T values
for steady-state test-section total temperature T¢ ¢ and Mach number Mg. The
transport lag h 1is approximated by

h = 4.20/\[T¢, ¢ (4)

Additionally, the guide vane angle is set through an actuator with the
transfer function approximated by

O p2/(s2 + zws +02) (5)
GGA(s)
where
w = 6.0 rad/sec
and
£ =0.8
and where
80p(s) =0p(s) -0g/s (6)

and 0p is the transient value of the input to the guide vane actuator.

Operational constraints limit the values of guide vane angle © and guide
vane angle rate 6 to lie within *30° and +309/sec, respectively.

Control laws are derived for &9, and &6, which regulate the Mach number
about the steady-state value Mg. Block diagrams for the composite transfer-
function sequences are shown in figure 3. The multivariable design methods to
be applied require constant-coefficient time-domain equations for equations (1)
and (5) which are developed in the section which follows.



MATHEMATICAL MODELS FOR MULTIVARIABLE CONTROL DESIGN

In this section, time-domain vector-matrix equations of the form
x[ (i + 1)A] = A x(id) + B u(id) (i =0,1,...) (7)

are developed from the dynamics of the test-section Mach number expressed in the
s-domain by equations (1) and (5). The matrices A and B 1in equation (7) are
constant and A is the sampling period for applying either of the zero-order

hold controls:

guide vane actuator input

u(id) = 88, (id) (8)
or guide vane actuator rate input

u(id) = 88, (id) (9)

The Mach number response OM(iA) is one of the elements of the state vector x.

The delay equation
T 8M(t) + SM(t) = k 86(t - h) (10)
and the ordinary differential equation
86(t) + 2zw 88(t) + w2 8B(t) = w2 86, (t) (11)

have the same input-output characteristics as equations (1) and (5), respec-

tively. Equations (10) and (11) can be written in state-variable form as

X(t) = Ay %(t) + Ay X(t - h) + By u(t) (12)
where

u(t) = 80, (t) (13)



%1 (t) SM(t)

X(t) = [Xo(t)| = |60 (k) (14)
%3 (t) 88 ()

[-1/7 0 0

Ag=| 0 0 1 (15)
_ O -w2 -2TWw
[0 k/T 0

a =0 0 0 (16)
K 0 0

and

0

By ={0 (17)
w2

Multivariable techniques exist which could be applied directly to equa-
tion (12), but the calculations are greatly complicated by the presence of the
time delay h. One approach to overcoming the problem of time delays is to
use a zero-order hold structure for the control and approximate the time delay
by an integral multiple of the sampling period; that is,

mA ~ h (18)
for some nonnegative integer m.
This approach to treating time delays is described in the appendix and, when

applied to equation (12), produces

%[ (1 + 1)A] = Ag %(iA) + Ay %[ (i ~ mA] + Ay %[ (i - m + 1)A] + By u(iA) (19)



where

e~8/T 0 0
;‘0 - ehod . 0 e Tl cop (At.u 1 - ;2) + (c \['I_-Ei)e'CA‘-“ sin (Am \F——;z) ('I/Lu\'l - ;Z)e“EAN sin (Am 1 - 52)
0 (-tu/\ﬁ——cz)e‘gm sin (Am 1 - ;2) e~LAw cog (Am 1 - ;2) - (c/\!ﬁ?}e‘lmﬂ sin (Am 1 - ;2)
(20)
0 A_k e-A/T 0
A 2T
A = - Pola, = 1o 0 0 (21)
0 0 0
0 — 0
~ A 2T
Ay = E Ay = 0 0 0 (22)
0 0 0
and
" A
By =./. P07 ar B, (23)
0

Because of the sparseness of 31 and 32, the delayed terms in equation (19)
involve only the variable iz. After introducing m (eq. (18)) additional vari-
ables and equations of the form

z1[(1 + NA] = Z5[(1 ~ m + 1)4] zz(iA)\

zo[ (1 + 1)A) = %[ (i -~ m + 2)A] = z3(ih)

) P (24)

zp-17 (i + DA] = %50 (1 - 1)A] = zg(id)

zpl (1 + 1)A] = X (iA)



then equations (19) to (24) can be combined to construct an equation of the form
of equation (7) with state vector

(%, (i) [ smqis) |
%5 (iA) 6 (iA)
%3 (id) 86 (iA)
‘ zq (iA) 86[ (i - m)A]
S 25 (iA) i 86 (i - m + 1)A] )
zm(iAld 86l (i - 1)4] _ﬂ

and guide vane actuator input control given by egquation (8).

The coefficient matrices depend parametrically on the operating condition
and sampling period chosen. A typical set of conditions for NTF operation within

a linear region of the data sets of tables I to III was selected for this study.
These conditions are as follows:

Mg = 0.9
Ty,f = 166.67 K (~160°F) (26)
Pt,f = 517 107 Pa (75 psi)

The fan is operated at synchronous speed. Table II lists

T = 1.964 sec
(27)
k = -0.0117 deg~!
and equation (4) yields
h = 0.33 sec (28)



Then, for a sampling period of

A= 0.1 sec

the selection of

causes the actual value of
interval in equation (19).
set-point guide vane angle
and the guide vane actuator

0.95035

0

0

A= 0

0

and

with

10

0.86976

-2.1798

[ o

0

0.1302

2.1798

0

0

(29)

(30)

iA + h to fall within the [iA - mA, iA - (m ~ 1)A]
For the conditions shown in equations (26), the

¢ 1is 1.93°. Using the foregoing numerical data
as the control u(iA), it can be determined that

0 ~0.002831 -0.0002779 0 0
0.06055 0 0 0 0
0.28848 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0]

(31)
(32)



x(id) =

Likewise, using guide vane

dure yields

—
0.95035
0

0

and

0
0.86976
~-2.1798

0

0

0

0.0047188

0.13024

0.1

0

SM(iA)

86 (iA)

86 (iA)
s6f (i - 4)4]
86[(i - 3)Al
86[(i - 2)A]

| 867(i -~ 1Al

0

0.06055

0.28848

0

0

0.1302

2.1798

1

actuator rate as the control

-0.0002831

0

0

(33)

u(iA), a similar proce-

-0.0002979

(35)
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with

[ SM(iA) N
80 (iA)
86 (iA)
865 (1A)

x(iA) = (36)
S8 (i - 4)A]

S§6[(i - 3)A]

86[(i - 2)A]

8§61 (i

1)Al

Now that equations (1) and (5) have been combined to form equation (7), the

multivariable design techniques are applied in the section which follows.
DESIGN AND LINEAR SIMULATION

Equation (7), with coefficients and state variables defined either by equa~
tions (31), (32), and (33), or (34), (35), and (36), represents variational equa-
tions linearized about the set point of equation (26). The design problem
considered in this report is to assume that the system is initially perturbed
from the operating point and derive, for either equation (8) or equation (9),

constant-gain state-variable-feedback control laws which cause the Mach number
and guide vane values to return rapidly to the operational set without violating

the constraints
-30° £ O(t) S 30° (37)
and
L ]
-309%/sec £ O(t) £ 309/sec (38)
In other words, control laws of the form
u(id) = -£f' x(iA) (39)

are sought such that

12



lim x(id) > 0

{>o0 (40)
without violating contraints (37) and (38) when

x[ (i + 4] = [a - BE'] x(ih) (41)
and

x(0) # 0 (42)

Two techniques, the optimal-linear-regulator and eigenvalue placement algorithms
{refs. 3 and 4) are employed to form the control gains.

The optimal-linear-regulator algorithm finds the feedback gain by selecting
the controller which minimizes a quadratic performance index

J = :E: x' {1 + 1HA) ox[(i + 1HA] + w2(iy} (43)

i=0

subject to equation (7), where Q 1is a nonnegative-definite symmetric weighting
matrix. When certain controllability conditions (ref. 4) are satisfied, the gain
is given by

£' = (1 + B'pB)"1B'PA (44)
with

P=¢'Po+ £ +Q (45)
and

¢ = A - Bf' (46)

Software for solving equations (44), (45), and (46) is described in reference 3.
Parametric studies of the elements of @ provided the choice of

Q = diag (10%4,0,...,0)

13



as a weighting matrix yielding control gains which, upon simulation, typically
produced responses satisfying the constraints -30°2 6 (t) £ 30° and
-309/sec £ 6 (t) £ 30°/sec. For A, B, and x as given in equations (31),
{(32), and (33), the optimal regulator procedure gave the control law
805 (iA) = 31.73 SM(iA) - 0.07685 86 (iA)
- 0.006603 86 (iA) - 0.009451 86 (i — 4)A]
- 0.01989 86 (i - 3)A] - 0.02093 &6[ (i - 2)4]
- 0.02202 86 (i - 1)A] (48)
For A, B, and x as given in equations (34), (35), and (36), the optimal
regulator procedure gave the control law
88 (M) = 27.31 6M(iA) - 0.06776 88 (iA)
- 0.006142 86 (iA) - 0.6808 86 p (iA)
- 0.008148 80[ (i - 4)A} - 0.01712 86[ (i -~ 3)A)
- 0.01801 86[ (i - 2)A) - 0.01895 88[ (i - 1)4A] (49)
In the eigenvalue placement algorithm (refs. 3 and 4), the designer selects
the eigenvalues of (A - Bf') which in turn determines the speed of closed-loop
response. It was generally found that significant improvement in the Mach number
response speed could not be obtained using control law (8) and the eigenvalue
placement algorithm without violating constraints (37) and (38). Results are

therefore only presented for eigenvalue placement using the actuator rate input
(egq. (9)). The eigenvalues of A given by equation (34) are as follows:

Eigenvalue Mode
0.950 Mach number
1.0 Integrator
0.579 * j(0.218) Actuator
0 h
0

Delayed states

0
0 J

14



The delayed states are in deadbeat form and need no alteration. The actuator
dynamics cannot be physically altered. Only the Mach number and integrator modes
are available for design. The best results were obtained when £ was selected
to cause both these eigenvalues to take on the value 0.9. The resulting control
law is

86 (iA) = 31.833 SM(id) - 0.0789 &8 (id)
- 0.007218 86 (iA) - 1.490 864 (id)
- 0.009482 86[(i - 4)A] -~ 0.01995 &6[ (i - 3)A]
- 0.02100 86[ (i - 2)A] - 0.02209 86[ (i - 1)A] (50)
In order to demonstrate the characteristics of the optimal regulator and

eigenvalue placement control laws, the transient response from a steady-state
condition at Mach 0.8 is calculated. Initially,

8M(0) = M(0) - Mg

0.8 - 0.9

= ~0.1 (51)

Moreover, the steady-state condition implies that, for t = 0,

SM(t)

~0.1

86 (t)

0 (52)

664 (t) = 66 (t)

Then, from equation (31) or equation (34), it can be seen that

SM[ (i + 1)A] = 0.95035 SM(iA) - 0.0002837 &6[(i ~ 4)A]

~ 0.0002979 §6[ (i - 3)4] (53)

Substituting

§6[ (i - 4)A) = 86[ (i - 3)A] = 88 (t)

15



and

SMl(i + 1)A) = SM(id) = -0.1

into equation (53) gives

86(t) = 8.55° (54)

[I7AN

for ¢t 0.

The open-loop Mach number and guide vane angle responses to initial condi-
tions of eguations (51) and (52) using control inputs

8By (£) = By(t) - 6 =0 (55)

are shown in figure 4. There it is shown that the variational Mach number dynam-—
ics, linearized about Mg = 0.9, is self-regulating; that is, dJ&M(t) converges
monotonically without overshoot to the origin (M = 0.9) with no &8, input.
Since the eigenvalues of equation (31) are within the unit circle of the complex
plane, self-regulation occurs for all initial conditions ©&M(0). Convergence to
0.9 is assumed to have occurred when a settling time tg is reached such that

[sM(t)] € 0.002 for t2 tg (56)

For figure 4, settling time tg 1is 8.4 sec.

Figure 5 shows the closed-loop Mach number and guide vane angle responses
with the optimal regulator actuator position input control law (48). The Mach
number response monotonically increases to Mg with a settling time of 5.7 sec
or an improvement of 2.7 sec over the open-loop results. Guide vane action is
smooth with a steady~-state value of 6g = 1.93°. The guide vane angle initially
decreases in order to increase Mach number.

Figure 6 shows the responses with the optimal regulator actuator rate input
control law (49). Mach number convergence is no longer monotonic. Overshoot
(M > 0.9) occurs at about 5.4 sec and does not settle down to within #0.002 until
7.4 sec. Guide vane angle convergence to 0Og is slower than that shown in
figure 4.

The responses with the eigenvalue placement actuator rate input control

law (50) are shown in figure 7. Mach number convergence is monotonic with no
overshoot. The settling time is about 6.3 sec.
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Based on the linear simulation, control law (48) has the better
performance - monotonic behavior with lower settling time. Control law (49)
controls only slightly better than the open-loop response. The overshoot
causes a time-consuming delay in convergence. Control law (50) has excellent
characteristics but a longer settling time than control law (48). However,
control law (50) is found to perform better than control law (48) when tested
on the more realistic nonlinear simulation described in the next section.

NONLINEAR SIMULATION

The physics of actual fluid flow in the NTF produce interactions between the
temperature, pressure, and Mach number control loops which were not accounted
for in the previous linear simulation. In order to test control laws (48)
to (50) in a more realistic situation, they are applied to a one-dimensional dis-
tributed parameter model of the NTF which is based on the Navier-Stokes equations
for unsteady flow. Control laws developed by Gumas for temperature and pressure
regulation are employed in this nonlinear simulation to maintain total tem-
perature and total pressure at steady flow values during Mach number transitions
effected by control laws (48) to (50). The performance of these control laws
when applied to the distributed parameter model is compared to that observed
using the linear model.

The distributed parameter model of the NTF is realized by solving the
Navier-Stokes partial differential equations of fluid flow (including viscous
and thermal terms) by means of McCormack's predictor-corrector method and the
use of an artificial viscosity technique for treating shocks. Tunnel geometry,
liquid nitrogen injection, gas venting, and fan dynamics are introduced in the
boundary conditions. Actuator dynamics, valve calibrations, fan-flow and thermal
relationships, heat transfer of gas to tunnel liner, flow dynamics of test sec-
tion to plenum, tunnel-wall flow losses, screen and turning-vane losses, strut-
sting drag losses, and sensor dynamics are all included in the model. The model
is simulated on a vector-processing digital computer requiring approximately
11 sec of machine time for each second of simulated time.

Gumas' control laws for total pressure and temperature act independently
of each other and the Mach control loop. Both control loops are of the
proportional-integral (PI) form designed for both steady-state regulation and
state transition control.

In the pressure control loop, total pressure is sensed in the stagnation
section of the NTF and subtracted from the pressure set-point value to produce
an input error signal to a PI controller. The PI controller output is summed
with a feed-forward signal, which is a filtered value of the estimated vent-
valve position necessary to achieve the commanded pressure set point. This
forms the position command to the vent-valve actuator. Vent flow then estab-
lishes total pressure.

The temperature control loop is somewhat more complex. In the regulation
mode, total temperature, also sensed in the NTF stagnation section, is sub-

17



tracted from a fixed-temperature set-point value, and the error is input to a

PI controller. The PI controller output is combined with fan operating param—
eters in a predictive control law which estimates the IN; flow rate necessary

to maintain an energy balance in the tunnel. The estimated LN, flow rate, after
passing through a lead-lag network which compensates for temperature sensor time
lags, is input to an LNy valve control loop. This loop establishes the valve
position needed to produce the required LN, flow rate. This maintains the total
temperature. During transition control, the PI controller is inactive to prevent
reset windup, and a slowly varying temperature set point, programmed to assure

a smooth temperature change, is furnished to the predictive control law. The
transition control mode was not employed in the tests reported herein.

Figure 8 shows the open-loop Mach number and guide vane angle responses of
the distributed parameter model, which corresponds to the linear case shown
in figure 4. Note that the initial value for 6 (0) in figure 8 differs from
the value in figure 4. This is because the value in figure 8 is the actual
steady-state value at Mach 0.8 for the distributed model, whereas the value for
figure 4 is the predicted value from the linear equations., Figures 9, 10,
and 11 show Mach number and guide vane angle responses of the distributed param-
eter model for optimal regulator control laws (48), (49) and the eigenvalue
placement control law (50), respectively. The results are seen to be similar to
the linear cases shown in figures 5 to 7. Control law (50) gives the smoothest
and most rapid performance of the three cases shown. A comparison of settling
times for the linear and nonlinear cases for open-loop and control laws (48)
to (50) is presented in table 1IV.

CONCLUDING REMARKS

A transfer function for the Mach number to guide vane angle control loop has
been employed to demonstrate the application of multivariable design methods to
the control of the National Transonic Facility (NTF). For a typical NTF operat-
ing point, digital forms of the optimal linear regulator and eigenvalue techni-
ques were applied to produce zero-order hold control laws for the guide-vane
actuator and actuator rate inputs. When evaluated in a realistic simulation of
the NTF process, the optimal regulator actuator input control laws and eigen-
value placement actuator rate input control laws reduced the settling time for
an open~loop input by more than 27 percent. However, the control law derived
from eigenvalue placement theory gave a preferable Mach number response. Given
a transfer matrix (relating, for example, total temperature, total pressure,
Mach number to injection rate, vent rate, guide vane angle), the procedure
described in this paper could be applied to produce digital control laws which
would regulate the state variables about a given design point and account for
cross-coupling between the modes.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

June 23, 1981
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APPENDIX
APPROXIMATION OF TIME-DELAY ORDINARY DIFFERENTIAL SYSTEMS BY
FINITE-DIFFERENCE EQUATIONS

Given a time invariant system with state x(t), control u(t), and a delay
h > 0 such that

X(t) = ¥o(t), u(t) =ug(t) for -h st =0

where the subscript o denotes initial condition and

d
T X(t) = Ag X(t) + Ay X(t - h) + Bg u(t) + By u(t - h) (A1)

for 0 2 T, a method is presented for approximating equation (Al) by the

St
finite-difference equation

%[ (i + 1)A)] = Ag %(iA) + Ay R[(i - mA) + Ay X[ (1 - m + 1)A]

+ Bp u(id) + By ul (i - mA) (i=0,1,...,N NA=1T) (A2)

In equation (A2), Ay, Ay, Ay, Bg, and By are constant matrices, the
control u(t) has been assumed to have zero-order hold structure with sampling
period A, and m is a nonnegative integer chosen such that mA approximates
the time delay h. Using equation (A2) and a new state vector generally struc-
tured as

x(id) = col{%(ip), R[(i - NA], R (i - 2)A),...,%[(1 - mA],

ul (1 = A, ul (i - 2)4),...,ul (i - m)Al} (A3)
the system dynamics can be stated in the form
x[(i + 1)A] = A x(iA) + B u(id) (i =0,1,...,N) (24)

to which modern control theory can be readily applied.
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APPENDIX

Begin by partitioning the interval [0,T] into segments tj, (i = 0,1,...,N)
such that

0=ty <ty <ty< i< g1 < ty=T7T (A5)
The solution of equation (Al) at points ¢t; is

=t tin N
X(ti41) = P (Bin1 ™) g ¢ +f ePo(tis1=T) Ay x(7 - h) ar
t
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ti+ o
+ J‘ P17 5yt - m) ar (26)

or, if Ai = ti47 - ti,

A
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x(tj+y) = eAoAl x(t;) +J~ e 0" Ay X(tj47 - T - h) ar

0
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1 ApT
+f e™0 By u(tjyy = T - h) dr (A7)
0

Let t; = iA with A constant and assume

h ~ mA (A8)
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whereby equation (A7) becomes

AgA 4 AgT
(1 + 1Al = 707 g(in + €0 a7 R[(A- 1) + (i - m)A] AT
0

B agt

+ e'0" By ul(i + 1)A - 1] at
0
B agr

+ €0 By u[@ -1) + (i - mAl ar (a9)
0

Next impose a zero-order hold form for the control function u(t) such that
u(t) = u(iA) = Constant, tel[iA, (i + 1)A) (i =0,7,...,N = 1) (A10)

Substituting equation (Al1Q) into equation (A9) gives
Agh | - B agr ~
% (1 + VAl = le % (iA) + e 0" Ay R[(A - 1) + (1 - mA] &
0

A A
+[f POT gy at | u(iny + f &PoT By ac| ul (i - mAl  (al1)
0 0

Finally, applying the trapezoidal integration rule to approximate the first
integral in equation (A11)

A
f eho’ Ay %A - 1) + (1 - m)A] ar
0

A A
~l:—eA°A AI, %[ (1 - m)A] +l:-p.1] %[ (i + 1 - m)A)
2 2

(A12)
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equation (Al11)
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appears in the form of equation (A2) with
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TABLE I.- VALUES OF TIME CONSTANT T AND GAIN k |

FOR T, g = 111.11 K (-260°F)

Mg rpm T, secC k, deg']
0.4 160 1.17 -0.00344
.5 160 1.15 -.00435
.6 240 1.69 -.00734
.7 240 2.08 -.00834
.8 240 2.39 -.00978
.9 360 2.58 -.01415
1.0 360 2.76 -.0144
T.1 360 1.97 -.0102
T.2 360 1.69 -.00836

TABLE II.- VALUES OF TIME CONSTANT T AND GAIN k

FOR Ty, f = 166.67 K (-160°F)

Mg rpm T, sec k, deg'1
0.4 200 0.980 -0.00364
.5 240 1.068 -.00477
.6 240 1.228 -.00573
.7 360 1.640 -.01089
.8 360 1.968 -.0119
.9 360 1.964 -.0117
1.0 360 2.020 -.0124
1.1 360 1.1418 -.00965




TABLE III.- VALUES OF TIME CONSTANT T AND GAIN k

FOR Ty, g = 222.22 K (-60° F)

Mg rpm T, sec k, deg~!
0.4 240 0.739 -0.00290
.5 240 .830 -.00403
.6 360 1.150 -.00820
.7 360 1.470 -.00920
.8 360 1.640 -.01010
.9 360 1.690 -.01110
1.0 360 1.760 -.01330

TABLE IV.- MACH NUMBER SETTLING TIMES FOR LINEAR

AND NONLINEAR SIMULATIONS

Settling times, sec
<
Control law |om < 0.002
Linear Nonlinear

Op(t) = O¢ 8.4 5.5
Equation (48) 5.7 4.0
Equation (49) 7.4 7.0
Equation (50) 6.3 4.0
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Figure 1.~ National Transonic Facility.
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